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The motion of a droplet subjected to linear shear 
flow including the presence of a plane wall 
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A fluid droplet subjected to shear flow deforms and rotates in the flow. In the presence 
of a wall the droplet migrates with respect to a material element in the undisturbed flow 
field. Neglecting fluid inertia, the Stokes problem for the droplet is solved using a 
boundary integral technique. It is shown how the time-dependent deformation, 
orientation, circulation and stability of a droplet are related to the capillary number 
and to the ratio of medium and droplet viscosity. The migration velocities are 
calculated in the directions parallel and perpendicular to the wall, and compared with 
theoretical models and experiments. The results reveal some of the shortcomings of 
existing models although not all discrepancies between our calculations and known 
experiments could be clarified. 

1. Introduction 
The dynamics of droplets and bubbles under shear conditions are of great 

importance in understanding the rheology of emulsions and the motions of droplet-like 
particles like biological cells. Following the work of Taylor (1932, 1934) a number of 
authors have dealt with this subject which has resulted in a large number of 
publications on experimental as well as theoretical research as reviewed by Rallison 
(1984). Most of the experimental work deals with the deformation and orientation of 
a fluid droplet either in a linear shear flow or in a hyperbolic flow (Rumscheidt & 
Mason 1 9 6 1 ~ ;  Torza, Cox & Mason 1972; de Bruin 1989). Rumscheidt & Mason 
(1 961 a, b) demonstrated the dramatic effects of tiny amounts of surface-active agents, 
often present in experiments as impurities, on the internal circulation of the droplet. It 
is therefore important to know whether the discrepancies found between experiments 
and analytical models (Torza et al. 1972; Rallison 1980), are due to the limitations of 
the models or to the imperfections in the experiments. 

Experiments on the lateral motion of fluid droplets in shear flow near a boundary 
are difficult to perform as described in e.g. Goldsmith & Mason (1962), Karnis & 
Mason (1967), Chan & Leal (1981) and recently Smart & Leighton (1991). Although 
a lot of theoretical work has been done on the subject of droplet deformation (Cox 
1969; Chan & Leal 1979; Chaffey, Brenner & Mason 1965; Barthes-Biesel & Acrivos 
1973), the known analytical theories are only valid over a limited range of the 
governing parameters concerning deformation, orientation and time scale (Rallison 
1980). The models describing lateral migration are all based on these deformation 
theories of limited application. 
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In order to explore the limitations of the analytical models on droplet deformation, 
a number of authors, starting with Youngren & Acrivos (1975), exploited the boundary 
integral technique in combination with numerical methods of solution. As yet the 
problems analysed numerically concern geometries with sufficient symmetry to reduce 
the calculations to one dimension. The only exceptions are Rallison (1981) and de 
Bruin (1989) who stlidied the deformation of a fluid droplet in unbounded, linear shear 
flow. Problems concerning the motion of a particle with respect to a plane boundary 
have been studied by Fischer (1987) who considered the inertia-induced lateral 
migration of a rigid sphere near a plane wall, and Pozrikidis (1992) who studied, 
among a variety of applications of the boundary integral method, the gravity-induced 
motion of a fluid droplet perpendicular to a wall in an otherwise quiescent fluid 
(Pozrikidis 1990). Very recently, Kennedy, Pozrikidis & Skalak (1994) presented their 
work on modelling droplet deformation and motion in simple shear flow, which shows 
similarities to the work presented in this paper, especially concerning unbounded flows. 
For the bounded case they give a few examples of lateral particle motion. 

Our interest in this subject is mainly driven by the research on the motion of red 
blood cells in the vicinity of the vessel wall (Uijttewaal 1993). These cells are well 
known to deform in viscous shear flow and to migrate laterally away from a bounding 
wall, which has beneficial consequences for the circulatory system. In order to obtain 
insight into the deformation and migration mechanisms of such particles we started 
with the most simple approximation of a red blood cell in the form of a fluid droplet. 
In a previoiis paper (Uijttewaal, Nijhof & Heethaar 1993) we reported calculations on 
a fluid droplet near a plane wall undergoing shear flow by making use of the boundary 
integral method, and demonstrated the applicability of this technique in combination 
with a numerical method of solution. That work was, however, limited to the case 
where the viscosity of the fluid droplet equalled that of the suspending phase. Under 
these restrictions calculations were relatively easy to perform but comparison with 
experimental work was difficult owing to the lack of experimental data. In this paper 
we extend the model to include a droplet with viscosity different from the viscosity of 
the suspending phase. We are now able to investigate the effects of droplet viscosity and 
to make a more extensive comparison with experimental results and analytical models. 

This paper is organized as follows. In $2 we will summarize the problem as it was 
stated in Uijttewaal et al. (1993) and give a description of the method of solution. The 
numerically calculated results for the configuration without a wall are given in $ 3. Data 
are presented on droplet deformation, orientation, internal circulation and transient 
motion, and they are compared with analytical models and experiments of other 
authors. Section 4 deals with the influence of a wall on the lateral and longitudinal 
motion with respect to the boundary and on the properties as given in 53.  

2. Analysis of the problem 
The definition of the problem under consideration is for the greater part similar to 

that of our previous paper (Uijttewaal et al. 1993), and those of other authors (Rallison 
1981 ; de Bruin 1989; Pozrikidis 1990, 1992) and will therefore be treated only briefly. 

A neutrally buoyant drop of viscosity vi is suspended in a fluid of viscosity ve, see 
figure 1. Both fluids are assumed to be Newtonian. The undeformed droplet with 
radius a is subjected to a linear shear flow G while positioned at a distance h from a 
plane wall. Owing to the applied flow field, the droplet will deform and orient itself 
with respect to the flow field. The interface of the droplet is maintained by the 
interfacial tension CT. The Reynolds number is assumed to be zero, leaving the problem 



The motion of a droplet subjected to linear shear f low 

x3 

47 

J 

FIGURE 1. Schematic diagram showing the definition of the problem under consideration. 

to be described by the Stokes equation and the continuity equation for each phase. 
Together with the boundary conditions, the problem under consideration is defined by 

v .  u= 0, (1) 
v.7 = 0, (2) 

where the stress tensor 7 is defined as 7 = -p/+v(VU+ VUT), withp representing the 
pressure and / the identity tensor. The boundary conditions are: 

U = U "  as x+m, 

U = - hCe, 

at the wall for a simple shear flow G .  At the droplet surface, continuity of velocity is 
required, 

The discontinuity of the normal stress component at the droplet interface is determined 
by the surface tension and local geometry 

( 7 .  n)est - (7 - n)int = unv - n, 
with n the outward normal of the droplet and V n twice the mean surface curvature. 

In order to solve the Stokes equation with the proper boundary conditions for the 
fluid droplet, we make use of the boundary integral method, which has already been 
successfully applied to similar problems (Pozrikidis 1992; Uijttewaal et al. 1993). This 
method has the advantage that the velocities at the interface of the droplet are found 
by calculating an integral over the droplet surface only. This is especially suitable to a 
problem where the surface has no fixed geometry and the geometry is of greater interest 
than the complete flow field inside and outside the droplet. In the boundary integral 
representation, the k-component of the dimensionless interfacial velocity is given by 

Uext = U i n t .  

c 

where h denotes the ratio of the droplet and medium viscosity v i / y e ,  C = ve  Ga/v is the 
dimensionless capillary number and U" the imposed flow at x+ a. The Green's 
function tensor J and the stress tensor K were derived by Blake (1971) for a domain 
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bounded by a plane wall in terms of an image system (see also Pozrikidis 1990). The 
integral equation has a unique continuous solution for 0 < h < co, as was proved by 
Power (1987). Equation (3) becomes explicit for the case h = 1 giving rise to a drastic 
reduction in computational effort (Uijttewaal et al. 1993). 

3. Numerical solution method 
In contrast to other comparable problems concerning droplet motion with or 

without a plane wall, the integrals of (3) cannot be reduced to one dimension. The only 
reduction in the computations lies in the remaining plane symmetry in the (x,,x,)- 
plane. In order to solve (3) numerically, the surface of the droplet was discretized with 
triangles. Evaluation of the surface properties like curvatures and normal vectors was 
performed at the triangle vertices. We therefore fitted locally a second-order surface 
with six free coefficients a,, given by 

a, x; + a,.; fa, x; + a4 XI xp + a5x1 x,+a, x,x, = 1, (4) 

through one marker point (x1,x2,x3) and five of its nearest neighbours. From this 
surface, the normal vector and curvature as required in (3) were easily obtained by 
determining the first- and second-order gradients from (4). It is clear that for ellipsoidal 
droplets these fits are exact while for deviations from the ellipsoidal shape the 
approximation is still accurate owing to the free choice of the coefficients at each 
separate grid point. 

Both kernels J and K in (3) are singular. The former is integrable and was solved 
with a four-node Euler-Legendre quadrature. The latter can be solved by making use 
of the special properties of the principal value integral (Ladyzhenskaya 1969; 
Pozrikidis 1990). 

After integrating (3) a set of linear equations is obtained that can be solved either by 
matrix inversion (Rallison & Acrivos 1978) or by an iterative method (Pozrikidis 1990). 
We have chosen the latter method because of its efficiency in arithmetic operations and 
guaranteed convergence. 

With the solution for the surface velocities thus obtained, the positions of the marker 
points on the droplet are advanced using the modified Euler method. With the 
evolution of time the marker points become unevenly distributed, especially in cases of 
high deformation. In order to obtain a numerically stable and sufficiently accurate 
scheme for these cases, the points are redistributed after each time step. The 
approximation of a continuous interface of the droplet according to (4) is used here 
again. The marker points are displaced tangentially within this surface so that the 
redistribution has effect neither on the shape nor on the volume of the drop. 

In the case with a wall present, an initially spherical droplet was allowed to deform 
and migrate away from the wall. The lateral and slip velocities were then determined 
after a sufficient period of time when the transient motion had vanished. This is in 
contrast with Uijttewaal et al. (1993) where the droplet was kept at a fixed position 
during the calculations. For h = 1 we observed hardly any difference between the 
migration velocities obtained for the ‘free’ and the ‘fixed’ particles. This was because 
the time needed for the droplet to deform to a steady shape was small compared to the 
time needed for the droplet to migrate away from the wall significantly. Therefore 
the droplet shape could be considered as quasi-steady. With h > 1, however, the 
deformation time increases while the migration time remains the same, making the 
cases of a free and a fixed particle different. Since the free droplet represents reality 
best, we preferred this approach in the present calculations. 
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FIGURE 2. Computations on drop deformation with various numbers of grid points 
for h = 3.6,C = 0.5. 

In order to assess the accuracy of the results we performed calculations varying the 
number of grid points as well as the time discretization. In figure 2 we depict the time- 
dependent deformation of a droplet with h = 3.6 and C = 0.5 calculated with 62, 114 
and 182 grid points. The difference between the three curves originates mainly from the 
changes in the droplet volume, which are largest with 62 grid points. The time-step size 
has an effect on the stability of the numerical scheme especially with highly deformed 
droplets. When it is sufficiently small, typically < 0.1, the time discretization merely 
affects the droplet volume. We therefore consider the extent to which mass is conserved 
(equation (1)) as an important criterion for the accuracy of the computations. The 
volume of the droplet as well as its centre of gravity could easily be calculated by means 
of Green's surface integral at each time step. During the calculations with 182 grid 
points the volume changes could be kept to within 0.5 % per unit of dimensionless time 
at h = 0.1, and down to 0.03 % at h = 10. 

4. Results and discussion 

4.1.1. Deformation, orientation and circulation 
We first consider the steady deformation of the fluid droplet in linear shear flow in 

the absence of a wall. The evolution of the drop is governed by the two physical 
parameters C and A. The ranges of these parameters are limited by (i) physical 
properties like droplet burst and (ii) numerical limitations like the slow convergence of 
the iterative matrix solving procedure at both very small and very large values of A, and 
the above-mentioned volume changes at very small values of A. 

We consider an initially spherical drop subjected to a sudden shear flow at T = 0 and 
follow the evolution of the droplet deformation in time until a steady state is reached. 
The deformation of the droplet, figure 3, is according to Taylor (1934) defined as D = 
(L -  B)/(L+ B), where L is the longest and B the shortest axis in the equatorial plane. 
It follows from figure 3 that for viscosity ratios smaller than 2 and for C < 0.4, the 
deformation is approximately proportional to the capillary number, with a constant 
only slightly depending on A. The slight decline of the slope with A decreasing from 1 .O 

4.1. Motion in the absence of a wall 
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FIGURE 3 .  Droplet deformation D versus capillary number C calculated for various values of h 
compared with Cox’s (1969) model (---) for A = 5,lO and quadratic theory of Barthbs-Biesel & 
Acrivos (1973) (----) for h = 0.1,1, 10. 
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c 
FIGURE 4. Droplet orientation q5 versus C calculated for various values of A, compared to typical 
results from the models of Cox (1969) (---), Cerf (1951) (-.-.) and Barthes-Biesel & Acrivos (1973) 
(- - - -). 

to 0.1 is in accordance with the small-deformation theories of Taylor (1934) and Cox 
(1969). At higher values of h the deformation still increases with C but at a smaller rate 
at higher C. At the highest values of A ( >  10) the deformation finally becomes 
independent of C. The slope of the deformation curves reveals good agreement with the 
analytical models at low values of h and C, whereas in the range 2 < h < 10 deviations 
are large, especially at high C. A comparison has been made with the quadratic model 
of Barthes-Biesel & Acrivos (1973) for h = 0.1, 1.0 and 10 (dotted lines in figure 3) 
showing a good qualitative agreement for all values of A.  Quantitative agreement 
is pretty good for h = 10, even better than the model of Cox (1969). 

The orientation angle 4, defined as the angle subtended by the x,-axis and the major 
axis of the deformed droplet, is presented in figure 4. It can be seen that at low C the 
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FIGURE 5.  Droplet deformation in the plane perpendicular to the longest axis of deformation I,, 
D, versus C for various values of A. 

orientation is proportional to C, while the slope depends strongly on A. At high C and 
high A the proportionality is less prominent and the curves tend to the limiting 
orientation of complete alignment with the streamlines, i.e. 4 = 0. Comparison with 
the models of Cerf (1951) (with a correction by Roscoe 1967), and Cox (1969) shows 
that Cox’s model is only applicable for large h whereas Cerf’s model gives a good 
approximation for A < 1. It should be mentioned that Cerf derived his model for elastic 
spheres but concluded that it should be also applicable to the case of fluid drops. Again 
the quadratic theory of Barthes-Biesel & Acrivos (1973) gives a good qualitative 
description of the droplet orientation over the whole range of A, and is quantitatively 
correct for C < 0.2. 

An interesting property, so far disregarded in both experiments and theory, is the 
deviation from rotational symmetry in the shape of the particle with respect to the 
major axis of deformation. Figure 5 presents the deformation D ,  perpendicular to the 
longest axis of deformation. A positive value of D ,  means that the droplet is slightly 
extended in the x,-direction. (For rotational symmetry this deformation index should 
be zero.) The extensional component of the linear shear flow finds its most prominent 
expression in large droplet deformation and orientation close to x/4 with droplets of 
low viscosity (figures 3, 4). The compression force in the (x,,x,)-plane acting on the 
short axis of the droplet will therefore lead to an increasing amplitude of D, with 
decreasing A. 

As a consequence of the vorticty of the shear flow, the droplet exhibits in addition 
to deformation a rotational motion. This means that the fluid inside the droplet 
circulates with a certain periodicity. The characteristic property for the circulation of 
the droplet, known as the circulation number, is defined as M = TC/47c, where Tis the 
dimensionless time required for a material point in the equatorial plane to make a 
closed loop around the circumference of the droplet. The lowest possible value of 
M = 1, indicating the fastest rotation, represents a circulation corresponding to the 
vorticity of the shear flow. This limiting case applies for a rigid sphere. It is known from 
the work of Rumscheidt & Mason (1961 b) that the analytical models give only 
reasonable predictions for h >, 1 and D+O. Furthermore, Rumscheidt & Mason 
(1961 a)  have demonstrated the dramatic effects of minute traces of surface-active 
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FIGURE 6. Droplet circulation M versus C for various values of A. Dashed lines according to the 
model of Torza et al. (1972). 

impurities on drop circulation, making high demands on the experimental procedure. 
In our calculations M could be determined at any time step by integrating the 
reciprocal tangential velocities around the circumference in the equatorial plane. 
Figure 6 shows the circulation number us. C at various values of A. As expected for the 
limit C i O  and h i  co the rotational motion resembles that of a rigid sphere. At 
h = 1 the agreement between calculations (solid curves) and analytical predictions 
(dashed curves) is good. Only when C becomes large does the resemblance diminish. 
For h < 1 the circulation number is always overestimated by the analytical model, 
becoming even worse for large C. The theoretical curve for h = 10 on the other 
hand appears correct only for C = 0. For larger C the agreement is poor again. 

An example will now be given to illustrate the characteristic differences between the 
results from our model, analytical theories of Taylor (1 934), Cox (1 969), Barthes-Biesel 
& Acrivos (1973) and experiments of Torza er al. (1972), for the case of stationary 
deformation and orientation. Figure 7(a) shows the deformation versus C for h = 3.6. 
The correspondence between our calculations and the experimental data is good 
whereas the analytical models show large deviations when C becomes large. When 
comparing the theoretical curves of figure 7(a) with our numerical results it is 
instructive to see how for C I 0 all curves coincide while for increasing capillary 
numbers the models successively start to deviate. First, the model of Taylor, derived 
for small values of h and C, then followed by Cox, a small-deformation theory of first 
order in C. The model of Barthes-Biesel & Acrivos (1973) of second order in C finally 
start to deviate as a result of breakup phenomena. Although the general shape of the 
experimental curve is predicted reasonably by the model of Barthks-Biesel & Acrivos 
(1973), their model predicts droplet burst at C x 0.5 while the experiments and our 
calculations show a stationary deformation up to C x 0.8. 

The orientation of the droplet is shown in figure 7(6) where the analytical models of 
Cerf (1951), Cox (1969) and Barthes-Biesel & Acrivos (1973) are also depicted. Again 
the calculations agree fairly well with the experiment though deviations are still 
present. 
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FIGURE 7. Comparison of computations (solid line) with experimental data (Torza et a!. 1972) 
h = 3.6 and models of Taylor (1934), Cox (1969), Cerf (1951) and Barthes-Biesel & Acrivos (1973) 
(dashed lines) : (a )  deformation, (b) orientation. 

h C,,(exp) C,,(sim) 
0.5 0.4 0.5 
1 .o 0.5 0.6 
2.0 0.8 1.3 
3.3 5.2  3.5 

TABLE 1. Critical capillary numbers for droplet stability. Simulations compared with 
experiments of de Bruin (1989) 

4.1.2. Droplet stability 
In order to investigate whether our model is suitable for predicting droplet breakup 

we compared the maximum capillary number yielding a stable droplet deformation 
with experimental data from de Bruin (1989), for four different viscosity ratios. In 
determining the stability of the droplet we could not distinguish between a physical 
breakup process and numerical instabilities resulting from the highly deformed mesh. 
The results obtained should therefore be interpreted as a conservative estimate. Table 
1 shows a reasonable agreement between numerically and experimentally obtained 
critical capillary numbers. Only for the viscosity ratio of 3.3 is the discrepancy rather 
large. It should however be mentioned that the critical capillary number for 3 < h < 4 
shows a very steep increase from about 3 up to 100. It is known from experiments 
(Torza et al. 1972; de Bruin 1989) that beyond h = 4 the droplet cannot be broken up 
by using a simple shear flow. The critical capillary numbers obtained with these 
simulations are reasonably confirmed by the experimental data of de Bruin (1989) and 
Torza et al. (1972) while, for example, the second-order model of Barthes-Biesel & 
Acrivos (1973) consistently underestimates these values. Although our data on droplet 
breakup are of limited accuracy they indicate theoretical evidence of droplet breakup 
at capillary numbers that are significantly higher than those predicted by a second- 
order breakup model, at least in the range considered here. 
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FIGURE 8. Droplet shapes at capillary numbers near the critical breakup values (table 1). 
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FIGURE 9. Local curvature in the plane of symmetry for a simulated droplet ( A  = 1.0, C = 0.3) 
(symbols) compared with the curvature along an axisymmetric ellipsoid (dashed line) and an ellipsoid 
with three different principal axes in agreement with the droplet shape (solid line). Horizontal dotted 
lines are the analytically obtained minimum and maximum curvatures for the axisymmetrical 
ellipsoid. 

For a closer look at droplet deformation, we depict in figure 8 the shapes of the 
droplets close to breaking up, corresponding to table 1. We see that despite small 
disturbances of the mesh the particle surface is rather smooth. A more accurate 
prediction of droplet breakup and shape requires a surface discretization that is more 
suitable and more stable for highly deformed drops. However, as breakup phenomena 
are not our main interest, we made no further attempts to improve our model for that 
purpose. 

In order to demonstrate how a droplet shape deviates from an ellipsoid with the 
same deformation we compared in figure 9 the mean surface curvature V - n / 2  at the 
grid points along the circumference in the plane of symmetry. The symbols represent 
the values obtained by simulating a droplet with h = 1 and C = 0.3. With that same 
algorithm the curvature of an axisymmetrical ellipsoid with the same deformation was 
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FIGURE 10. Relaxation of an initially ellipsoidal-shaped droplet of 4x/3 volume with axis ratio 
1 : 1 : 2 in an otherwise quiescent fluid calculated for various viscosity ratios. 

computed and is depicted as a dashed line. The maximum and minimum values of the 
ellipsoid curvature can easily be calculated analytically (horizontal dotted lines) and 
coincide perfectly with the values obtained with our code. In the same graph we depict 
the curvature along an ellipsoid where the deformation in the perpendicular (x,-) 
direction (like in figure 5 )  has been taken into account (solid line). The fact that the 
curvature found for the axisymmetrical ellipsoid is always smaller than that of the 
ellipsoid with three different axes but with the same volume can be illustrated by 
considering that the perpendicular deformation lowers the curvature in the x,- 
direction. Obviously the droplet is able to reduce the curvature in the plane of 
symmetry even slightly more. 

4.1.3. Time-dependent deformation 
A model giving a reasonable qualitative description of the time-dependent 

deformation was derived by Cox (1969). This model predicted the interesting 
phenomenon called ‘wobbling’, originating from the differences in time scale between 
deformation of the drop and rotation of the applied external flow field. It was pointed 
out by him and later confirmed by Rallison (1980) that his model for the time- 
dependent deformation applies only in the limit of small dD/dt and large A.  
Experimental data on time-dependent deformation are scarce so models can only be 
compared with the studies of Torza et al. (1972) and de Bruin (1989). 

A characteristic measure for the evolution of time-dependent behaviour is the 
relaxation time of an initially ellipsoidal droplet in an otherwise quiescent fluid, i.e. 
C = 0. Figure 10 shows the reduction of the deformation of an ellipsoidal drop with axis 
ratios 1 : 1 : 2 ( D  = 0.33, D, = 0) computed for various viscosity ratios. It is clear from 
figure 10 that the relaxation time is strongly related to h especially when h is large. 
When the drop viscosity is low the relaxation time tends to a constant value. This can 
be understood by considering the relaxation time always to be dominated by the most 
viscous of the two fluids when time has been made dimensionless using the interfacial 
tension and the viscosity of the continuous phase ye. 

For the case of an initially spherical drop instantaneously subjected to a constant 
shear flow, the time required for the drop to obtain a stationary deformation will be 
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FIGURE 11. Simulated transient droplet deformation (Calc. U.) on instantaneously applied shear 
flow, compared with experimental (exp.) and numerical (Calc. B.) work of de Bruin (1989). 
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FIGURE 12. Damped wobbling of a droplet h = 10 for three capillary numbers. Dotted lines 
indicate exponential decaying oscillation. 

comparable to the relaxation time. Figure 11 shows experimental and numerical data 
of de Bruin (1989) on the evolution of droplet deformation in time together with our 
calculations, for C = 0.8 and h = 5. Our calculations predict an approximately correct 
evolution in time but with an underestimated amplitude of deformation. Later we will 
find the same discrepancies with an even larger value of h = 25. The numerical 
calculations of de Bruin (1989) are more difficult to interpret and seem to indicate 
droplet burst after only 12 units of time. For the case C = 0.2 and h = 1 both numerical 
models coincide whereas the experiments give only a slightly higher value for the final 
deformation. 

An interesting phenomenon typical for high viscosity ratios is the small overshoot of 
the deformation. This 'wobbling' phenomenon of the droplet is depicted in more detail 
in figure 12 for h = 10 at different capillary numbers. It can easily be seen that the 
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FIGURE 13. Transient drop deformation, calculations for h = 25 and C = 1.5 (-) and experiments 
of Torza et al. (1972) (----) and theory of Cox (1969) (---). Calculations coincide with the model 
according to Rallison (1980). 

exponential damping (dotted lines) of the oscillations is in effect constant irrespective 
of C. The wobbling frequency however is proportional to C within 2%.  At larger 
values of h the effects are more pronounced as is shown in figure 13 for h = 25 and 
C = 1.5. Again our results are compared with the model of Cox and in addition with the 
experiments of Torza et al. (1972). Although qualitative agreement is good, even the 
better prediction by our model and the virtually coinciding results of Rallison (1980) 
do not agree with the experimental data. A possible explanation for the discrepancy 
might stem from experimental imperfections. As was stated in 84.1.1, Rumscheidt & 
Mason (1961 a) found that the circulation was always hindered by the presence of small 
traces of impurities. The change of the circulation will affect the deformation of the 
droplet as well as the wobbling time constant during transient motion. Otherwise it is 
likely that the assumptions made in our model, such as the Newtonian viscosities of the 
fluids, the linearity of the flow field and, not least, the absence of inertia, do not 
completely cover experimental conditions. 

4.2. Influence of u plane wall on droplet motion 
The relative velocity of the droplet with respect to the undisturbed flow field has a 
component parallel with the wall, for deformable as well as rigid particles, and a 
component perpendicular to the wall, only present for deformable particles in the 
absence of inertia. As reported in Uijttewaal et al. (1993), the migration velocities are 
highly dependent on drop deformation and orientation. In the previous subsection we 
showed that the analytical models for drop deformation are of limited value. It might 
be expected that the analytical models for drop migration, which are based on 
the deformation models too, also have their limitations. After properly non- 
dimensionalizing, the lateral migration velocity, as derived by Chan & Leal (1979) 

ULat,C,L,  - 16+ 19h3(54h2+97h+54) -_ 
(Calh)' 1 6 t  16h 280(1 +A)' ' (5) 

can be compared with our calculations. An example of the determination of the lateral 
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FIGURE 14. Evolution of lateral velocity at four different starting positions of an initially 
undeformed droplet, with C = 0.3, h = 0.5. 

(b) 
Chan & Leal ,A 

0.1 1 10 0.1 1 10 
I I  A 

FIGURE 15. U,,,/(Ca/h)’ versus A for (a) h = 1.5, 2.5 and 10 with C = 0.2 and (b) C = 0.1, 0.15, 0.2 
and 0.3 with h = 2.5 compared with the model of Chan & Leal (1979). In (a) the curve with h = 20 
and C = 0.1 shows correspondence with the model for small A. 

migration velocity is shown in figure 14 for h = 0.5, C = 0.3 for different starting 
positions. Starting with a spherical droplet at a position h /a  the droplet deforms and 
the migration velocity rapidly increases. As the droplet obtains a steady shape the 
migration velocity starts to decrease as a result of the increasing distance between the 
particle and the wall. It is therefore necessary to determine the lateral migration 
velocity from these curves a sufficient period of time after the maximum in the curve. 
For proper comparison with the model of Chan & Leal we divided the calculated 
velocity by (Ca/h)2 making the expression depend exclusively on A. In figure 15(a) this 
factor is shown for C = 0.2 and for wall distances h/a  = 1.5,2.5, 10 respectively, 
revealing its slight dependency on h. The depicted theoretical curve according to Chan 
& Leal (1979) shows that the lateral velocity is always overestimated by their model. 
It becomes clear, especially at small wall distances, that their postulate of a remote wall 
is violated, making the model less accurate in these cases. In order to verify the 
consistency of our model we depict in addition the lateral migration velocity calculated 



: 

with h = 20 and C = 0.1. For this case the agreement with the Chan & Leal model is 
pretty good for h < 1. By assuming a droplet shape according to Taylor (1934) and a 
n/4-orientation their analysis clearly fails for h > 1. In the limit h --f 00 the droplet will 
behave like a rigid sphere and will therefore not migrate with respect to the wall. This 
finds expression in the decline of Ulat with increasing viscosity ratio. In contrast with 
this, simulations of Kennedy et al. (1994) show migration velocities slightly smaller 
than the Chan & Leal model for h = 1 and C = 0.159, whereas with h = 6.4 they found 
values at least three times the Chan & Leal model. 

Calculations were also performed for various values of C as depicted in figure 15 (b) 
with h = 2.5. It can be seen that the factor U,,t/(Ca/h)2 is not fully independent of C. 
Because the proportionality of D with C is better maintained at small C (figure 3) the 
curves start to decline at higher values of h in these cases. Data obtained for h < 1 are 
more difficult to interpret. The left part of figure 15(b) shows that at C z 0.2 the factor 
is maximum over a substantial range of A. Obviously, at a distance h = 2.5 the wall 
cannot be considered as remote and higher-order effects like excess deformation and 
alignment due to the presence of the wall become appreciable, affecting the lateral 
migration velocity (Uijttewaal et al. 1993). 

Data obtained for the slip velocity can be treated similarly. Shapira & Haber (1990) 
derived for the velocity difference between the undisturbed fluid flow and the particle 
velocity 

(b) 

Shapira & Haber 

U s 1 i p S . H .  - 1 + 2.5h 
C ( U / ~ ) ~  8( I + A )  ' 

In the limit of A+ co, (6) is the same as the result obtained by Goldman, Cox & 
Brenner (1967) for rigid spheres. Figure 16(a) shows a comparison of (6) with 
computations. Again the analytical model gives larger values than the numerical results 
especially at small wall distances. For h = 10 the agreement is very good, showing only 
small deviations for h > 2. It should be noted that Shapira & Haber (1990) did not take 
into account that for large h the longest axis of the deformed droplet is aligned almost 
parallel to the wall (figure 4) leading to a small reduction of the slip velocity. For still 
larger A the slopes of the curves show a slight increase, indicating that the droplet 
motion for the limit h --f co resembles that of a rigid sphere. The effect of the capillary 

FIGURE 16. Usl%p/(u/h)z C versus h for (a) h = 1.5, 2.5 and 10 with C = 0.2 and (b)  C = 0.1, 0.2 
and 0.3 with h = 2.5 compared with the theory of Shapira & Haber (1990). 
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FIGURE 17. The effect of wobbling motion on lateral migration for h = 25, C = 1.5 and h x 1.52: 
(a) migration velocity, ( b )  deformation and (c) orientation. 

number on deviations from the analytical model for h = 2.5 is shown in figure 16(b). 
At higher values of C the assumptions of small deformation and fixed x/6orientation 
cannot be met, leading to a reduction of the slip velocity. 

Recently Smart & Leighton (1991) reported measurements on the lateral drift of a 
droplet ( A  = 0.08) in a Couette device and compared their experimental results with a 
model almost identical with that of Chan & Leal (1979). Although their experiments 
confirmed the (Calh)' dependency of Ulat, the experimentally found lateral velocities 
were always larger (by up to 50°/0) than predicted by their model. This is in contrast 
with the results obtained from figures 15(a) and Is@). As stated in Uijttewaal et al. 
(1993) the discrepancies found might be imputed to a small curvature in the flow field 
of their Couette device with an aspect ratio (gap width divided by average radius) of 
0.17. The influence of this curvature is clearly demonstrated in their figure 3 where 
droplets migrate away from the outer Couette cylinder and find an equilibrium 
position significantly beyond the centre of the gap nearer to the inner cylinder (see also 
Chan & Leal 1981). 

4.2.1. Wobbling and migration 
It is clear that the amplitudes of the lateral and slip velocities as presented above are 

highly sensitive to fluctuations in droplet deformation and orientation. It is therefore 
interesting to observe how the time-dependent lateral migration of a wobbling droplet 
depends on variations in deformation and orientation. In figure 17(a-c) we depicted 
the transient motion of a wobbling droplet with h = 25, C = 1.5 and h = 1.5. Owing 
to the wobble motion the lateral velocity varies with the same periodicity as the 
deformation but with a phase difference of nearly n/2. The phase difference with the 
orientation is x. With lower viscosity ratios the damping of the oscillations is stronger 
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FIGURE 18. The effect of wobbling motion on lateral migration for h = 10, c‘ = 1.5 and h z 1.55: 
(a) migration velocity, (b )  deformation and (c)  orientation. 

and the phase relations become less clear as is shown in figure 18(a-c) for h = 10. This 
indicates that the lateral migration is not related to the orientation or deformation of 
the droplet in a simple way. Furthermore it is interesting to note that in both cases the 
droplet initially migrates towards the wall. This behaviour, only observed with h > 2, 
was always transient. During stationary motion we never found migration towards the 
wall. 

5 .  Concluding remarks 
In this paper we have shown the results of numerical simulations of droplet motion 

in Stokes flow. It was demonstrated how deformation, orientation, and circulation of 
the droplet was affected by the externally applied simple shear flow and to what extent 
the existing analytical models are applicable. The boundary integral technique we used 
to solve the problem is well suited for applying to other types of flow. Comparing our 
results with small-deformation theories of first- and second-order accuracy in C reveals 
the limitations of those models. With high capillary numbers (C > 0.3) and 
intermediate viscosity ratios (2 < h < 10) in particular, the assumption of small 
deformation no longer holds and the agreement with our calculations and experimental 
data successively fails with increasing C. We observe similar discrepancies for droplet 
orientation. Cox’s model appears valid for highly viscous drops, whereas the 
predictions of Cerf are in agreement with our calculations for small A. The second- 
order model of Barthes-Biesel & Acrivos (1973) gives good predictions for all values 
of A, but only with sufficiently small capillary number. For the droplet circulation 
number we could only find reasonable agreement for the limit C + O  when h 3 1. 
Another salient finding is the disturbance of the rotational symmetry in the plane 
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perpendicular to the longest axis of deformation which has never been analysed thus 
far. Furthermore, the time-dependent deformation, like the wobbling motion, appears 
to be always slower in our computations than in the theory of Cox (1969). Agreement 
with experimental data of Torza et al. (1972) and the de Bruin (1989) for h = 25 and 
h = 5 respectively remained poor although our model comes close. 

The lateral and slip migration velocities were also calculated with a wall present. It 
has been shown that the model of Chan & Leal (1979) for lateral migration yielded 
higher velocities than our calculations, particularly when the drop was positioned close 
to the wall. The incorporation of the small-deformation theory which has only Iimited 
validity (i.e. C+ 0, h + co, h < 1) into the models on lateral migration is responsible for 
the dramatic differences, found particularly at high values of h and C. The large 
discrepancies between the experimental results of Smart & Leighton (1991) and 
theories on droplet migration could however not be clarified by our numerical model. 
The sensitivity to disturbances, and the limited number of experiments on lateral 
migration of droplets in Couette flow, however, makes it difficult to draw firm 
conclusions from a comparison with our numerical simulations. Clearly, a combination 
of extensive experimental research and further numerical investigation is required to 
obtain a better knowledge on the parameters affecting the migration velocities. 

The authors are indebted to drs. J. Wiersma for his contribution in analysing the 
analytical models, and to prof. dr. R. M. Heethaar for his valuable advice. 
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